

TPU made from rubber & further sustainable loops @ BASF

Dr. Giulio Latini & Dr. Lena Funke

DKT Tagung Nürnberg July 1st – 4th, 2024

Antwerp

Rubber and TPU

Vulcanized rubber

- Thermosetting
- Chemical crosslinking
- Homoatomic

TPU

- Thermoplastic
 - Physical crosslinking
- Heteroatomic

G. Scholz, M. Gehringer, Thermoplastic Elastomers At a Glance, De Gruyter (2021), DOI: 10.1515/9783110739848

Our contribution to a climate-neutral future

2030: -25% emission compared with 2018.*

2050: Net zero emissions.

2030: double^{**} circular sales to reach **€17 billion**.

- Recycled and renewable feedstocks
- Close and extend material loops

We have three areas of focus

Post-Consumer Waste (PCW) loop – 1

Only 10% of plastic wastes are recycled* **Mechanical recycling (PCW)** Semifinished Plastic **Total PCW** Incineration Recovery goods goods Yeld Loss Downcycling Disposal **Plastics** Manufactured Plastic production goods waste Landfill

Chemical aging

Post-Consumer Waste (PCW) loop – 2

Sorting accuracy

- Contamination
- Banned substances

* Based on KPMG report - "From waste to Commodity delivering on the EU's vision of a circular plastics economy"

On-par Cycling

Post-Consumer Waste (PCW) loop – 3

8

Mass Balance Certification

D - BASF We create chemistry

9

Expanding recycling loops – 1

Solvolysis of crosslinked PEOL-PUs

Lower layer: glycol, hard phase

Putting the mattress waste problem to bed with Neveon

- In Europe, **40 million mattresses per year**
- BASF is recovering high quality polyols
- Neveon is manufacturing new high-quality mattresses from regained polyols
- Together aim to close the loop

Lower layer: glycol, hard phase

Expanding recycling loops – 2

ChemCycling[™] (Chemical Recycling *via* pyrolysis)

* under application of a mass balance approach

** from a sorting plant

Pyrolysis is not the optimum solution for all waste plastics

Without heteroatoms

Pyrolysis works well for polyolefines (e.g., NR, SBR, BR rubber, etc)

- Stream Broader waste-mix
- Polyethylene (PE) $\begin{bmatrix} H & H \\ & -C \\ -$

Heteroatomic polymers require elaborate cleaning of pyrolysis oil as

catalyst poisoning (N, O, S)

corrosion (CI)

With heteroatoms

Polyethylene terephthalate (PET)

Polyvinyl chloride

Polyurethane (PUR)

 $\frac{1}{4}R^{1}O-C-N-R^{2}-N-C-O$

Ccycled® products examples in core industries

Since 2020, our customers successfully launched commercial products

Food Packaging

Südpack: Mozzarella and sausage packaging Vartdal / Ekornes: Fish box STEPAC: Fresh produce packaging

Imballagi Alimentari: Icecream boxes

Packaging

BSH: Protection packaging **Hirsch / Eutecma**: Pharma box

Textiles

Vaude: Outdoor gear Fulgar: Yarns Pompea: Underwear

Transportation

Mercedes-Benz: Door handle

Engineering Plastics

Zell-Metall: Engineering Plastic Stock Shapes

Technical Film

Gasification enables further potentials

Heterogeneous waste streams

- Complementary and scalable solution
- Potential enabler for recycled and biogenic feedstocks
- Products for different value chains:
 - syngas,
 - ▶ methanol,
 - methane,
 - Fischer-Tropsch crude/liquid hydrocarbons

The circular economy at BASF

ChemoMechanical Upcycling of TPU – 1

Polymer repair during mechanical recycling Maintain material properties and quality

*500 g CO₂e = equivalent for Infinergy midd sole, **reduction by 50% due to recycling, slight increase due energy consumption for recycling, ***reachable due to green electricity, transformation at BASF

ChemoMechanical Upcycling of TPU – 2

ChemoMechanical Upcycling of TPU – 3

Single-material products

(e.g., sneaker) that can easily be recycled

One material (TPU) for all components and processes to create all functions.

Process to recycle the shoes ... maintain high level of material quality

We are expert in the **chemistry**, **technologies**, **laws and regulation** around the world

Partnerships are part of BASF's efforts to develop chemical recycling as a business

Sustainable loops along the entire production chain and product lifetime

Chemical recycling allow transformation of contaminated plastic waste to raw material

Let's Embrace the Path to Sustainability Together

Questions time

We create chemistry